Month: December 2017

Graduate Seminar, 18th December

Speaker: Albin Nilsson

Title: The Standard Model Extension, Gravitational tests and Cosmology

Abstract: Combining the standard model and general relativity into quantum gravity is a task which has occupied physicists for over 50 years. These two theories are expected to merge at the Planck scale (E_p \approx 10^{19} GeV). However, experiments at this energy are beyond the reach of humanity at present. As such, we need a way to study the Planck scale effects that trickle down to accessible energies, thereby learning about the true dynamics of quantum gravity. This can be done using effective field theory, and since many theories of quantum gravity predict Lorentz and/or CPT violation, searching for signals of this is a good place to start. The Standard Model Extension (SME) is an effective field theory containing the standard model of particle physics, general relativity, as well as all possible operators which break Lorentz symmetry. Since CPT violation implies Lorentz violation, the SME also includes operators which both break and preserve CPT symmetry. In this talk, I will describe the structure of the SME, focusing on the gravitational sector. I will review some of the gravitational tests performed and discuss how we can study the SME in a cosmological setting

Graduate seminar, 11th December

Speaker: Szymon Domański

Title: Application of the ultrahigh dose thermoluminescence dosimetry for radiation-hardness testing

Abstract: In radiation processing, where large absorbed doses and dose rates from photon sources have to be measured with reasonable accuracy, dosimetry systems serve an important function. Proven methods are demanded to perform radiation measurements in development of new processes, validation, qualification, and verification of established processes and archival documentation of day to day processing uniformity. Implementation a system corresponding to recognised standards from scratch is not the simplest task. However, it is possible. During my presentation I wish to discuss the possible application of LiF:Mg,Cu,P thermoluminescence phosphor in the field of material testing.