This week’s talk is cancelled.

## Graduate Seminar, 3rd December

This week’s talk is cancelled.

## Graduate Seminar, 26th November 2018

**Speaker**: Rahul Nair

**Title**: Study Of Thermalisation Of Quark Gluon Plasma Using Ultra Relativistic Heavy Ion Collisions

**Abstract**: In this talk, I will discuss the process of thermalisation of QGP formed at ultra relativistic heavy Ion Collisions. A brief overview of a heavy Ion Collision scenario will be presented. The hydrodynamical calculations together with experimental results points towards a rapid thermalisation of the QGP formed in such a collision. The anisotropic elliptic flow is an indicator of such a thermalisation in the medium. This fact will be discussed and demonstrated using results from Hydrodynamics and data from RHIC and ALICE. I will also explain how the dilepton yield can be used to estimate the thermalisation time of the QGP drop.

## Graduate Seminar, 19th November

**Speaker**: Michał Palczewski

**Title**: Shapes and sizes of high-K states in SHN

**Abstract**: Superheavy elements are highly unstable systems with extremely low production cross sections. As the creation of new ones is very difficult, as a parallel or additional line of study one could try a search for new, long-lived metastable states of already known nuclei. It is well known that an enhanced stability may result from the K-isomerism phenomenon which is based mainly on the (partial) conservation of the K-quantum number. To do such studies energies are calculated within the microscopic – macroscopic approach with the deformed Woods-Saxon potential. Configurations are fixed by a standard blocking procedure and their energy found by a subsequent minimization over deformations. Results of blocking for 2 quasiparticle states (nn or pp)as well as for 4 quasiparitcle states (nnpp) will be shown. The relationship between electric quadrupole moments in different isotopes will be discussed next. Especially some of specific deformation parameters for No isotopes – which are experimentally studied now via laser technique will be demonstrated during the talk. Finally, predictions for Rf and some of heavier elements as: Sg, Hs, Ds and Cn – will be shown.

## Graduate Seminar, 5th November

**Speaker**: Albin Nilsson

**Title**: Lorentz Violation and Extra Dimensions with Gravity Probe B

**Abstract**: The satellite experiment Gravity Probe B uses four gyroscopes to test General Relativity using the gravity well of the Earth through the de Sitter and Lens-Thirring effects. However, the errors from this experiment are quite large, which allows for alternative explanations of the data through modifications of General Relativity. In this talk I will describe the theory and experimental setup of Gravity Probe B, along with its main results. I will then outline how these results could be used to put constraints on some of the Standard Model Extension (SME) parameters, which is an effective field theory framework for Lorentz and CPT violation. Finally, I will describe how this discrepancy between theory and experiment could be attributed to the existence of extra spatial dimensions.

## Graduate Seminar, 29th October

**Speaker**: Michał Palczewski

**Title**: Shapes and sizes of high-K states in SHN

**Abstract**: Superheavy elements are highly unstable systems with extremely low production cross sections. As the creation of new ones is very difficult, as a parallel or additional line of study one could try a search for new, long-lived metastable states of already known nuclei. It is well known that an enhanced stability may result from the K-isomerism phenomenon which is based mainly on the (partial) conservation of the K-quantum number. To do such studies energies are calculated within the microscopic – macroscopic approach with the deformed Woods-Saxon potential. Configurations are fixed by a standard blocking procedure and their energy found by a subsequent minimization over deformations. Results of blocking for 2 quasiparticle states (nn or pp)as well as for 4 quasiparitcle states (nnpp) will be shown. The relationship between electric quadrupole moments in different isotopes will be discussed next. Especially some of specific deformation parameters for No isotopes – which are experimentally studied now via laser technique will be demonstrated during the talk. Finally, predictions for Rf and some of heavier elements as: Sg, Hs, Ds and Cn – will be shown.

## Graduate Seminar, 22nd October

This week’s talk is cancelled.

## Graduate Seminar, 15th October

**Speaker**: Anatolii Koval

**Title**: Exploration of thermosphere wave field planetary structure via in-situ satellite measurements

**Abstract**: The Earth’s atmosphere is in the process of dynamic adaptation and global movements striving to equilibrium. Development of new models requires a generation of much more precise numerical models of geo-space. Plenty of observations and theoretical estimations exposes the importance of atmospheric gravity waves (AGW) in an understanding of energy and impulse balance of a geo-space. Even nowadays giving numerical characteristics of AGW is problematic, since most of the data obtained from distant observations which can not give precise information for this processes. The only source of precise numerical characteristics can be in situ satellite measurements. Last and the most advanced satellite mission measuring required parameters was DE 2. It was operating in the period of 1980-1983 yy. Through digital signal analysis and complex procedure of AGW selection were identified quantitative properties of the planetary structure of a thermosphere wave field.

## Graduate seminar, 8th October

**Speaker**: Paweł Kowalski

**Title**: Design and optimization of the strip PET scanner based on plastic scintillators

**Abstract**: The novel whole-body PET system based on plastic scintillators is developed by the J-PET Collaboration. It consists of plastic scintillator strips arranged axially in the form of a cylinder, allowing the cost-effective construction of the total-body PET. In order to determine properties of the scanner prototype and optimize its geometry, advanced computer simulations using the GATE software were performed. The spatial resolution, the sensitivity, the scatter fraction and the noise equivalent count rate were estimated according to the NEMA norm as a function of the length of the tomograph, number of the detection layers, diameter of the tomographic chamber and for various types of the applied readout. Results of simulations of these characteristics will be presented during the talk.

## Graduate Seminar, 1st October 2018

**Speaker**: Krzysztof Jodłowski

**Title**: R(D) (R(D*)) anomaly in B(B*)\to D\tau\nu decay vs 1-loop leptonic corrections in MSSM

**Abstract**: Quotient of branching ratios for different final lepton states – R(D) (R(D*)) – measured by LHCb, Belle and BaBar, deviates from predictions of Standard Model by \sim 2\sigma (4\sigma). One loop corrections in leptonic sector were calculated in Minimal Supersymmetric Standard Model. Scan over parameter space was done and it was found that MSSM corrections

do not provide significant enhancement of R(D) (R(D*)), contrary to result given in https://arxiv.org/abs/1604.03416. In second part of the talk, brief review of dark matter physics will be given, focusing on work done in BayesFITS group.